

Is Planning a Project Using 100 CFM Worth Your While?

Capital Costs

Engine Supplier	\$ 155,000
Mechanical Contractor	133,000
Sulfur Treatment	96,000
Electrical Contractor	120,000
Siloxane Treatment	209,000
CMCMUA as G.C.	124,000
Consultants/Studies	21,000
	858,000
Grant	- 285,000
	\$ 573,000

Cost 3/7/07 - 6/19/08

Stack Tests/Emission Testing \$ 13,900

Parts/Repairs/Service 20,000

50% of Electrician 50,000

Improvements <u>10,000</u>

\$ 93,900

Revenue:

Renewable Energy Certificates	\$ 30,200
Heat Recovery	10,000
Avoided Cost	53,600
On-Site Sales	167,000
Grid Sales	49,700
Carbon Credits	<u>71,500</u>
	\$ 382,000

Pay Back Calculator

Annual Revenue

\$ 305,600

Annual Costs

- \$ <u>75,100</u>

Annual Net Revenue

\$ 230,500

Capital 573,000 / 230,500 = 2.5 years

Environmental Credits

REC's $3/07 \rightarrow 5/08$

 $5/08 \rightarrow 5/10$

\$ 12.11 / Rec

\$ 22.75 / Rec

Carbon Credits

First Sale 2/08

\$ 3.00 / Metric Ton

Second Sale 5/08

\$ 6.60 / Metric Ton

TIMELINE STRESS

	Submission	2/03/06
Air Permit	Preconstruction	5/15/06
	Final	7/11/06
Engine Bid		3/21/06
Siloxane Bid		5/09/06
Sulfur Bid		5/09/06
Completion		2/2007
Engine Start-Up		3/07/07

Landfill Factoids

Began 1984

Footprint 93 Acres

Waste In Place ≈ 4,000,000 Tons

Current CFM Production 1,100 → 1,300 cfm

Projected within 10 years → 1,500 cfm

Average Methane Content 52% → 55%

Project Going Forward "Modular Design"

Engine Bid

2 – Waukesha – Rich Burn Engines

Rated @ 150 kw each

Sulfur Scrubber

Bid to Reduce from 2,000 ppm Sulfur

to < 25 ppm

6 inches water column pressure loss across vessel

180 day change out period

Results

Still have yet to change out media and expect 3 years before change out

Installed continuous read monitor – never risen above .09 ppm.

Siloxane Scrubber

Reduce from 1 ppm to 5 ppb

(we actually use 25 mg/m³) as change out period criteria

Must exit siloxane scrubber with minimum 5 psig

120 day change out period

Carbon Based Two Vessel System

Lead Lag Set-up

Monthly Laboratory Testing for Siloxane

Change outs being driven by Pressure drops

@ 40 day average

Blower Skid

2 Blowers for Redundancy, 10 HP each

3 Stage Heat Exchanger

Particulate size down to .3 microns

Dependability

Up Time:

Potential System Hours 22,272

Total Engine Hours 20,648

% Up Time

92.7%

Real World Efficiencies

Engines Ran

20,648 hours

Produced

2,293,786 Kwh

Engines Rated @ 150 kw

2,293,786 / 20,648 = 111.1 Kw

111.1 / 150 = 74.1%

Efficiencies vs. Temp

Up Grades

- 1. Exterior Cooler
- Secondary Carbon Filter
 Primary Filter 3 microns
 Secondary Filter .2 microns

3rd Engine

June 18th 2008 – Started 3rd Engine

No Grant Funding

Treatment Skid rated @ 150 cfm

Each Engine Using an Average of 47 cfm

Conclusions

- 1. Project a "Money Maker"
- Environmental credits add 27% to Bottom
 Line
- 3. Magnitude of Scale probably excludes 3rd Party Project, most likely "In-House"